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1.1 Introduction 

Texture mapping is a very efficient technique to enrich the appearance of polygonal models 
with details. Textures do not only store color information, but also normals for bump 
mapping and various shading attributes to create appealing surface effects. However, texture 
mapping requires parameterizing a mesh, by associating a 2D texture coordinate with every 
mesh vertex. Distortions and seams are often introduced by this difficult process, especially 
on complex meshes. 

The 2D parameterization can be avoided by defining the texture inside a volume enclosing 
the object. Work by Debry et al. [Debry et al 2002] and Benson [Benson and Davis 2002] 
have shown how 3D hierarchical data structures, named octree textures, can be used to 
efficiently store color information along a mesh surface without texture coordinates. This has 
two advantages. First, color is stored only where the surface intersects the volume, thus 
reducing memory requirements. Figure 1 illustrates this idea. Second, the surface is regularly 
sampled and the resulting texture does not suffer from any distortions. Apart from mesh 
painting any application that requires storing information on a complex surface can benefit 
from this approach.  

This chapter details how to implement octree textures on today's GPUs. The octree is directly 
stored in texture memory. We discuss the tradeoffs between performance, storage efficiency 
and rendering quality. After explaining our implementation (section 1.2) we demonstrate it on 
two different interactive applications: 

- A surface painting application (section 1.3). In particular we discuss the different 
possibilities for filtering the resulting texture (section 1.3.3). We also show how a 
texture defined in an octree can be converted into a standard texture, possibly at 
runtime (section 1.3.4). 

- A non-physical simulation of liquid flowing along a surface (section 1.4). The 
simulation entirely runs on the GPU.  

Figure 2: Un-parameterized Mesh 
textured with an octree texture. Only 6 
Mb are required. 

Figure 1: Data is only stored around 
the mesh surface. 



1.2 A GPU accelerated hierarchical 

structure: the N3-tree 

1.2.1  Definition 
An octree is a regular hierarchical data structure. The first 
node of the tree, the root, is a cube. Each node either has 8 

children or has no children. The 8 children form a 222 ××  
regular subdivision of the parent node. A node with children is 
called an internal node. A node without children is called a leaf. 
Figure 3 shows an octree surrounding a 3D model where the 
nodes that have the bunny’s surface inside them have been 
refined and empty nodes have been left as leaves. 

In an octree the resolution in each dimension increases by two 
at each subdivision level. Thus, to reach a resolution 

of 256256256 ×× , 8 levels are required (28 = 256). 
Depending on the application, one might prefer to divide each edge by an arbitrary number 
N rather than 2. We therefore define a more generic structure called an N3 tree. In an N3 tree, 
each node has N3 children. The octree is an N3 tree with N=2. A larger value of N reduces 
the tree depth required to reach a given resolution, but tends to waste memory since the 
surface is less closely matched by the tree. 

1.2.2  Implementation 
To implement a hierarchical tree on a GPU we need to define how to store the structure in 
texture memory and how to access the structure from a fragment program.  

A simple approach to implement an octree on a CPU is to use pointers to link the tree nodes 
together. Each internal node contains an array of pointers to its children. A child can be 
another internal node or a leaf. A leaf only contains a data field.  

Our implementation on the GPU follows a similar approach. Pointers simply become indices 
within a texture. They are encoded as RGB values. The content of the leaves is directly stored 
as an RGB value within the parent node’s array of pointers. We use the alpha channel to 
distinguish between a pointer to a child and the content of a leaf. Our approach relies on 
dependent texture lookups (or texture indirections). This requires the hardware to support an 
arbitrary number of dependent texture lookups, which is the case of most modern GPUs 

The following sections detail our GPU implementation of the N3 tree. For clarity, the figures 
will illustrate the 2D equivalent of an octree (a quadtree). 

 Storage 

We store the tree in an 8-bit RGBA 3D texture called the indirection pool. Each ‘pixel’ of the 
indirection pool is called a cell.  

The indirection pool is subdivided into indirection grids. An indirection grid is a cube of  

NNN ××  cells (a 222 ××  grid for an octree). Each node of the tree is represented by an 
indirection grid. It corresponds to the array of pointers of the CPU implementation described 
above. 

A cell of an indirection grid can be empty or contain either  

- data if the corresponding child is a leaf, 

- the index of an indirection grid if the corresponding child is another internal node 

Figure 3: An octree surrounding 
a 3D model 



Figure 4 illustrates our tree storage. 

We note wvu SSS ××=S  the number of indirection grids stored in the indirection pool and 

wvu SNSNSR ⋅×⋅×⋅= N  the resolution in cells of the indirection pool. 

 

Both data values and indices of children are stored as RGB-triples. The alpha channel is used 
as a flag to determine the cell content (alpha = 1 indicates data – alpha = 0.5 indicates index – 
alpha = 0 indicates empty cell). The root of the tree is always stored at (0,0,0) within the 
indirection pool. 

Accessing the structure: tree lookup 

Once the tree is stored in texture memory we need to access it from a fragment program. As 
with standard 3D textures the tree defines a texture within the unit cube. We want to retrieve 

the value stored in the tree at a point [ ]31,0∈M . The tree lookup starts from the root and 

successively visits the nodes containing the pointM until a leaf is reached. 

Let DI be the index of the indirection grid of the node visited at depth D. The tree lookup is 

initialized with )0,0,0(0 =I  which corresponds to the tree root. When we are at depth D we 

know the index DI  of the current node’s indirection grid. We will now explain how we 

retrieve 1+DI from DI . 

The lookup pointM is inside the node visited at depth D. To decide what to do next we need 

to read from the indirection grid DI  the value stored at the location corresponding toM . To 

do so, we need to compute the coordinates of M within the node. 

At depth D a complete tree produces a regular grid of resolution 
DDD N NN ××  within the 

unit cube. We call this grid the depth D grid.  Each node of the tree at depth D corresponds to 

a cell of this grid. In particular M is within the cell corresponding to the node visited at 

depth D. The coordinates of M within this cell are given by )( DNMfrac ⋅ . We use these 

coordinates to read the value from the indirection grid DI . The lookup coordinates within the 

indirection pool are thus computed as: 
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Figure 4: Storage in texture memory (2D case). The indirection pool 
encodes the tree. Indirection grids are drawn with different colors. The 
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We then retrieve the RGBA value stored at P  in the indirection pool. Depending on the 
alpha value, we will either return the RGB color if the child is a leaf, or we will interpret the 

RGB values as the index of the child’s indirection grid ( 1+DI ) and continue to the next tree 

depth.  Figure 5 summarizes this entire process for the 2D case (quadtree). 

The lookup ends when a leaf is reached. In practice our fragment program also stops after a 
fixed number of texture lookups: On most hardware it is only possible to implement loop 
statements with a fixed number of iterations (however, early exit is possible on latest 
hardware). The application is in charge of limiting the tree depth with respect to the 
maximum number of texture lookups done within the fragment program. The complete tree 
lookup code is given below in section Tree lookup Cg code. 

 

Figure 5: Example of tree lookup. At each step the value stored within the current 
node’s indirection grid is retrieved. If this value encodes an index, the 
lookup continues to the next depth. Otherwise, the value is returned. 
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Further optimizations 

The computation of P requires a frac instruction. It is actually possible to avoid computing 
the frac by relying on the cyclic behaviour of the texture units (repeat mode). We leave the 
detailed explanations as an appendix, located on the CDROM. 

We computeP as 
S

NM
P D

D
∆+⋅

=  where D∆ is an integer within the range[ [S,0 . 

We store D∆  instead of directly storing the DI values. Please refer to the appendix on the 

CDROM  for the code to compute D∆ .  

Encoding indices 

The indirection pool is an 8-bit 3D RGBA texture. This means that we can only encode 256 
different values per channel. This gives us an addressing space of 24 bits (3 indices of 8 bits). 
It makes possible to encode octrees large enough for most applications. Moreover, the 
resolution of 3D textures is limited to 2563 on current GPUs. 

Within a fragment program a texture lookup into an 8-bit texture returns a value mapped 
between [0,1]. However, we need to encode integers. Using a floating point texture to do so 
would require more memory and would reduce performance. Instead, we map values 
between [0,1] with a fixed precision of 1/255, and simply multiply the floating point value by 
255 to obtain an integer. Note that on hardware without fixed precision registers, we need to 
compute floor(0.5+255 * v) to avoid rounding errors. 

Tree lookup Cg code 

 

float4 tree_lookup(uniform sampler3D IndirPool, // Indirection Pool 
                   uniform float3    invS,      // 1 / S 
                   uniform float     N, 
                   float3            M)         // Lookup coordinates 
{ 

  float4 I      = float4(0.0,0.0,0.0,0.0); 
  float3 MND    = M; 
 

  for (float i=0;i<HRDWTREE_MAX_DEPTH;i++) { // fixed # of iterations 
    float3 P; 
    // compute lookup coords. within current node 
    P = (MND + floor(0.5+ I.xyz*255.0)) * invS; 
    // access indirection pool     
    if (I.w < 0.9)                   // already in a leaf ? 
      I =(float4)tex3D(IndirPool,P); // no, continue to next depth 
 
#ifdef DYN_BRANCHING // early exit if hardware supports dynamic branching 
  if (I.w > 0.9)   // a leaf has been reached 
       break;         
#endif 

 

    if (I.w < 0.1)   // empty cell 
      discard; 
    // compute pos within next depth grid 
    MND = MND * N; 

  } 

  return (I); 
} 

 

 



1.3 Application 1: painting on meshes 

In this section we use the GPU accelerated octree structure presented in the previous section 
to create a surface painting application. Thanks to the octree, the mesh does not need to be 
parameterized. This is especially useful with complex meshes like trees, hairy monsters or 
characters. 

The user will be able to paint on the mesh through a 3D brush, similar to the brush used in 
2D painting applications. In this example, the painting resolution is homogeneous along the 
surface though multiresolution painting would be an easy extension if desired. 

1.3.1  Creating the octree 
We start by computing the bounding box of the object to be painted. The object is then 
rescaled such as its largest dimension is mapped between [0,1[. The same scaling is applied to 
the three dimensions since we want the painting resolution to be the same in every 
dimension. After this process, the mesh entirely fits within the unit box. 

The user specifies the desired resolution of the painting. This determines at which depth the 
leaves of the octree containing colors are. For instance, if the user selects a resolution of 5123 
the leaves containing colors will be at depth 9.  

The tree is created by subdividing the nodes intersecting the surface until all the leaves are 
either empty or are at the selected depth (color leaves). To check whether a tree node 
intersects the geometry, we rely on the box defining the boundary of the node. This process 
is depicted in Figure 6. 

The following algorithm is used: 

void createNode(depth, polygons, box) 
   for all children (i,j,k) within (N,N,N) 
  if (depth+1 == painting depth)   // painting depth reached ? 
   setChildColor(i,j,k,white) // child is at depth+1 
  else 
   childbox = computeSubBox(i,j,k,box) 

           if (childbox intersect polygons) 
    child=createChild(i,j,k) 

    // recurse  
    child->createNode(depth+1,polygons,childbox) 

   else 
    setChildAsEmpty(i,j,k) 

This algorithm makes use of our GPU octree texture API. The links between nodes (indices 
in the indirection grids) are set up by the createChild call. The values stored in tree leaves are 
set up by calling setChildAsEmpty and setChildColor which also set the correct alpha value. 

 

Figure 6: Building an octree around the mesh surface. 

Input mesh Unit box Final octree 



1.3.2  Painting 
In our application the painting tool is drawn as a small sphere moving along the surface of 
the mesh. This sphere is defined by a painting center Pcenter and a painting radius Pradius. The 
behaviour of the brush is similar to that of brushes in 2D painting tools. 

When the user paints, the leaf nodes intersecting the painting tool are updated. The new color 
is computed as a weighted sum of the previous color and the painting color. The weight is 
such that the painting opacity decreases as the distance from Pcenter increases.  

To minimize the amount of data to be sent to the GPU as painting occurs, only the modified 
leaves are updated in texture memory. This corresponds to a partial update of the indirection 
pool texture (under OpenGL we use glTexSubImage3D). The modifications are tracked on a 
copy of the tree stored in CPU memory. 

1.3.3  Rendering 
To render the textured mesh, we need to access the octree from the fragment program, using 
the tree lookup defined in section 1.2.2. 

The untransformed coordinates of the vertices are stored as 3D texture coordinates. These 
3D texture coordinates will be interpolated during the rasterization of the triangles. 
Therefore, within the fragment program we know the 3D point of the mesh surface being 
projected in the fragment. By using these coordinates as texture coordinates for the tree 
lookup, we retrieve the color stored in the octree texture. 

However, this produces the equivalent of a standard texture lookup in ‘nearest’ mode. Linear 
interpolation and MIP-mapping are often mandatory for high quality results. We discuss in 
the following how to implement these techniques for octree textures. 

 Linear interpolation 

Linear interpolation of the texture can be obtained by extending the 
standard 2D linear interpolation. Since the octree texture is a volume 
texture, 8 samples are required for linear interpolation. 

However, we store information only where the surface intersects the 
volume. Some of the samples involved in the 3D linear interpolation 
are not on the surface and have no associated color information. 
Consider a sample at coordinates (i,j,k) within the maximum depth grid (recall that the depth 
D grid is the regular grid produced by a complete octree at depth D). The seven other 
samples involved in the 3D linear interpolation are at coordinates (i+1,j,k) (i,j+1,k) (i,j,k+1) 
(i,j+1,k+1) (i+1,j,k+1) (i+1,j+1,k) and (i+1,j+1,k+1). However, some of these samples may 
not be included in the tree because they are too far from the surface. This leads to rendering 
artifacts as shown Figure 7. 



 

Figure 7: Artifacts introduced by straightforward linear interpolation (left).   
Corrected linear interpolation (right). 

We remove these artifacts by modifying the tree creation process. We make sure that all of 
the samples involved in the tri-linear interpolation are included in the tree. This can be easily 
done by enlarging the box used to check whether a tree node intersects the geometry. The 
box is built in such a way that it goes through the surrounding samples. Indeed, the sample at 
(i,j,k) will be used by tri-linear interpolation if the surface is present between the sample and 
its direct neighbours (e.g. the ones at (i+/-1,j+/-1,k+/-1) ). This is illustrated Figure 8. 

 

Figure 8: Modifying the tree creation to remove linear interpolation artifacts 

In our demo, we use the same depth for all color leaves. Of course, the octree structure 
makes it possible to store color information at different depths. However, doing so 
complicates linear interpolation. For more details please refer to [Benson and Davis 2002]. 

 MIP-mapping 

When a textured mesh becomes small on the screen multiple samples of the texture fall into 
the same pixel. Without a proper filtering algorithm this leads to aliasing. Most GPUs 
implement the MIP-mapping algorithm on standard 2D textures. We extend this algorithm to 
our GPU octree textures. 

We define the MIP-mapping levels as follows. The finest level (level 0) corresponds to the 
leaves of the initial octree. A coarser level is built from the previous by merging the leaves in 
their parent node. The node color is set to the average color of its leaves, and the leaves are 
suppressed (see Figure 9). The octree depth is therefore reduced by one at each MIP-

The enlarged box shown for the middle 
sample (red) now intersects with the surface. 
The sample will be included in the octree. 

All the samples required for 
correct linear interpolation are 
now stored in the octree. 

Orange samples are not 
stored in the tree.  This leads 
to false interpolation. 



mapping level. The coarsest level has only one root node containing the average color of all 
the leaves of the initial tree. 

Storing one tree per MIP-mapping level would be expensive. Instead, we create a second 3D 
texture, called the LOD pool.  The LOD pool has one cell per indirection grid of the 

indirection pool (see Figure 9, bottom row). Its resolution is thus wvu SSS ××  (see section 

1.2.2, Storage). Each node of the initial tree becomes a leaf at a given MIP-mapping level. 
The LOD pool stores the color taken by the nodes when they are used as a leaf in a MIP-
mapping level. 

 

Figure 9: Example of tree with MIP-mapping 

To texture the mesh at a specific MIP mapping level, we stop the tree lookup at the 
corresponding depth and lookup the node’s average color in the LOD pool. The required 
MIP-mapping level can be computed within the fragment program using partial derivative 
instructions. 

1.3.4  Converting the octree texture to a standard 2D texture 
Our ultimate goal is to use octree textures as a replacement for 2D textures, thus completely 
removing the need for a 2D parameterization. However, the octree texture requires explicit 
programming of the texture filtering. This leads to long fragment programs. On recent 
GPUs, performance is still high enough for texture authoring applications, where a single 
object is displayed. But for applications displaying complex scenes, like games or simulators, 
rendering performance may be too low. Moreover, GPUs are extremely efficient at displaying 
filtered standard 2D texture maps. 

Being able to convert an octree texture into a standard 2D texture is therefore important. We 
would like to perform this conversion dynamically: This makes possible to select the best 
representation at run-time. For an example, an object near the viewpoint would use the 
linearly interpolated octree texture and switch to the corresponding filtered standard 2D 
texture when it goes farther.  The advantage is that filtering of the 2D texture is natively 
handled by the GPU. Thus, the extra cost of the octree texture only applies when details are 
visible. 

In the following we assume that the mesh is already parameterized. We describe how we 
create a 2D texture map from an octree texture. 

To produce the 2D texture map, we render the triangles using their 2D (u,v) coordinates 
instead of their 3D (x,y,z) coordinates. The triangles are textured with the octree texture, 
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using the 3D coordinates of the mesh vertices as texture coordinates for the tree lookup. The 
result is shown Figure 10. 

 

Figure 10: Converting the octree into a standard 2D texture 

However, this approach produces artifacts. When the 2D texture is applied to the mesh with 
filtering, the background color bleeds inside the texture. This is due to the fact that samples 
outside of the 2D triangles are used by the linear interpolation for texture filtering. It is not 
sufficient to add only a few border pixels: more and more pixels outside of the triangles are 
used by coarser MIP-mapping levels. These artifacts are shown Figure 11. 

 

Figure 11: Artifacts resulting from straightforward conversion 

In order to suppress these artifacts, we compute a new texture where the colors are 
extrapolated outside of the 2D triangles. To do so we use a simplified GPU variant of the 
extrapolation method known as push-pull. This method has been used for the same purpose 
in [Sander et al 2001]. 

We first render the 2D texture map as described above. The background is set with a 0 alpha 
value. The triangles are rendered using an alpha value of 1. We then ask the GPU to 
automatically generate the MIP-mapping levels of the texture. Then, we collapse all the MIP-
mapping levels into one texture interpreting the alpha value as a transparency coefficient.  
This is done with the following Cg code: 

Painted mesh Rendered texture map 

Finest level Coarser level 



PixelOut main(V2FI         IN, 

       uniform sampler2D Tex) // texture with MIP-mapping levels 
{ 

    PixelOut OUT; 

 

    float4 res   = float4(0.0,0.0,0.0,0.0); 
    float  alpha = 0.0; 
    // start with coarsest level 
    float  sz    = TEX_SIZE; 
    // for all MIP-mapping levels 
    for (float i=0.0;i<=TEX_SIZE_LOG2;i+=1.0) 
    { 

       // texture lookup at this level 
       float2 MIP=float2(sz/TEX_SIZE,0.0); 
       float4 c=(float4)tex2D(Tex,IN.TCoord0,MIP.xy,MIP.yx); 
       // blend with previous 
       res=c + res*(1.0-c.w); 

       // go to finer level 
       sz /= 2.0; 

    } 

    // done – return normalized color (alpha == 1) 
    OUT.COL=float4(res.xyz/res.w,1); 
    return OUT; 
} 

Finally, new MIP-mapping levels are generated by the GPU from this new texture. Figure 12 
and Figure 13 show the result of this process.  

 

Figure 12: Color extrapolation 

 

Figure 13: Artifacts are removed thanks to the color extrapolation. 
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1.4 Application 2: Surface Simulation 

We have seen with the previous application that octree structures are useful for storing color 
information along a mesh surface. But octree structures on GPU are also useful for 
simulation purposes. In this section we present how we use an octree structure to simulate on 
the GPU liquid flowing along a mesh. 

 

Figure 14: Liquid flowing along a mesh surface 

We will not go through the details of the simulation itself since this is beyond the scope of 
this chapter. We concentrate instead on how we use the octree to make available all the 
information required by the simulation. 

The simulation is done by a cellular automaton residing on the surface of the object. To 
perform the simulation we need to attach a 2D density map to the mesh surface. The next 
simulation step is computed by updating the value of each pixel with respect to the density of 
its neighbours. This is done by rendering into the next density map using the previous density 
map and neighbouring information as input. 

Because physical simulation is very sensitive to distortions, using a standard 2D 
parameterization to associate the mesh surface to the density map would not produce good 
results in general. Moreover computation power could be wasted if some parts of the 2D 
density map are not used. Therefore, we use an octree to avoid the parameterization.  

The first step is to create an octree around the mesh surface (see section 1.3.1). We do not 
directly store density within the octree: the density needs to be updated using a “render to 
texture” operation during the simulation and should therefore be stored in a 2D texture map. 
Instead of density, each leaf of the octree contains the index of a pixel within the 2D density 
map. Recall that the leaves of the octree store three 8 bits values (in RGB channels). To be 

able to use a density map larger than 256256× , the values of the blue and green channels 
are combined to form a 16 bits index. 

During simulation we also need to access the density of the neighbours. A set of 2D RGB 
textures, called neighbour textures, are used to encode neighbouring information. Let I be an 
index stored within a leaf L of the octree. Let Dmap be the density map and N a neighbour 
texture. The Cg call tex2D(Dmap,I) returns the density associated with leaf L. The call 
tex2D(N,I) gives the index within the density map corresponding to a neighbour (in 3D 
space) of the leaf L. Therefore, tex2D(Dmap,tex2D(N,I) ) gives us the density of the 
neighbour of L. 

To encode the full 3D neighbourhood information, 26 textures would be required (a leaf of 
the tree can have up to 26 neighbours in 3D). However, fewer neighbours are required in 
practice. Since the octree is built around a 2D surface, the average number of neighbours is 
likely to be closer to 9. 



Once these textures have been created, the simulation can run on the density map. Rendering 
is done by texturing the mesh with the density map. The octree is used to retrieve the density 
stored in a given location of the mesh surface. Results of the simulation are shown Figure 14. 
The user can interactively add liquid on the surface. Videos are available on the CD-ROM.  

1.5 What is on the CD ? 

You will find on the accompanying CD-ROM the complete source code of the N3 tree library 
together with the complete source code of the painting and simulation applications. We also 
provide compiled executable and videos of these applications. Please visit 
www.aracknea.net/octreetextures for updates. 

1.6 Conclusion 

We have presented a complete GPU implementation of octree textures. These structures 
offer an efficient and convenient way of storing undistorted data along a mesh surface. This 
can be color data as in the mesh painting application, or data for dynamic textures simulation 
as in the flowing liquid simulation. Rendering can be done efficiently on modern hardware 
and we have provided solutions for filtering to avoid texture aliasing. Nevertheless, since 2D 
texture maps are preferable in some situations we have shown how an octree texture can be 
dynamically converted into a 2D texture without artifacts. 

Octrees are very generic data structures, widely used in computer science. They are a 
convenient way of storing information on un-parameterized meshes, and more generally in 
space. Many other applications, like volume rendering, can benefit from their hardware 
implementation.  

We hope that you will discover many further uses for and improvements to the techniques 
presented in this chapter! 
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