
Chapter 1 Octree Textures on the GPU
Sylvain Lefebvre,

Samuel Hornus,

Fabrice Neyret,

GRAVIR/IMAG – INRIA Grenoble, France

1.1 Introduction

Texture mapping is a very efficient technique to enrich the appearance of polygonal models
with details. Textures do not only store color information, but also normals for bump
mapping and various shading attributes to create appealing surface effects. However, texture
mapping requires parameterizing a mesh, by associating a 2D texture coordinate with every
mesh vertex. Distortions and seams are often introduced by this difficult process, especially
on complex meshes.

The 2D parameterization can be avoided by defining the texture inside a volume enclosing
the object. Work by Debry et al. [Debry et al 2002] and Benson [Benson and Davis 2002]
have shown how 3D hierarchical data structures, named octree textures, can be used to
efficiently store color information along a mesh surface without texture coordinates. This has
two advantages. First, color is stored only where the surface intersects the volume, thus
reducing memory requirements. Figure 1 illustrates this idea. Second, the surface is regularly
sampled and the resulting texture does not suffer from any distortions. Apart from mesh
painting any application that requires storing information on a complex surface can benefit
from this approach.

This chapter details how to implement octree textures on today's GPUs. The octree is directly
stored in texture memory. We discuss the tradeoffs between performance, storage efficiency
and rendering quality. After explaining our implementation (section 1.2) we demonstrate it on
two different interactive applications:

- A surface painting application (section 1.3). In particular we discuss the different
possibilities for filtering the resulting texture (section 1.3.3). We also show how a
texture defined in an octree can be converted into a standard texture, possibly at
runtime (section 1.3.4).

- A non-physical simulation of liquid flowing along a surface (section 1.4). The
simulation entirely runs on the GPU.

Figure 2: Un-parameterized Mesh
textured with an octree texture. Only 6
Mb are required.

Figure 1: Data is only stored around
the mesh surface.

1.2 A GPU accelerated hierarchical

structure: the N3-tree

1.2.1 Definition
An octree is a regular hierarchical data structure. The first
node of the tree, the root, is a cube. Each node either has 8

children or has no children. The 8 children form a 222 ××
regular subdivision of the parent node. A node with children is
called an internal node. A node without children is called a leaf.
Figure 3 shows an octree surrounding a 3D model where the
nodes that have the bunny’s surface inside them have been
refined and empty nodes have been left as leaves.

In an octree the resolution in each dimension increases by two
at each subdivision level. Thus, to reach a resolution

of 256256256 ×× , 8 levels are required (28 = 256).
Depending on the application, one might prefer to divide each edge by an arbitrary number
N rather than 2. We therefore define a more generic structure called an N3 tree. In an N3 tree,
each node has N3 children. The octree is an N3 tree with N=2. A larger value of N reduces
the tree depth required to reach a given resolution, but tends to waste memory since the
surface is less closely matched by the tree.

1.2.2 Implementation
To implement a hierarchical tree on a GPU we need to define how to store the structure in
texture memory and how to access the structure from a fragment program.

A simple approach to implement an octree on a CPU is to use pointers to link the tree nodes
together. Each internal node contains an array of pointers to its children. A child can be
another internal node or a leaf. A leaf only contains a data field.

Our implementation on the GPU follows a similar approach. Pointers simply become indices
within a texture. They are encoded as RGB values. The content of the leaves is directly stored
as an RGB value within the parent node’s array of pointers. We use the alpha channel to
distinguish between a pointer to a child and the content of a leaf. Our approach relies on
dependent texture lookups (or texture indirections). This requires the hardware to support an
arbitrary number of dependent texture lookups, which is the case of most modern GPUs

The following sections detail our GPU implementation of the N3 tree. For clarity, the figures
will illustrate the 2D equivalent of an octree (a quadtree).

 Storage

We store the tree in an 8-bit RGBA 3D texture called the indirection pool. Each ‘pixel’ of the
indirection pool is called a cell.

The indirection pool is subdivided into indirection grids. An indirection grid is a cube of

NNN ×× cells (a 222 ×× grid for an octree). Each node of the tree is represented by an
indirection grid. It corresponds to the array of pointers of the CPU implementation described
above.

A cell of an indirection grid can be empty or contain either

- data if the corresponding child is a leaf,

- the index of an indirection grid if the corresponding child is another internal node

Figure 3: An octree surrounding
a 3D model

Figure 4 illustrates our tree storage.

We note wvu SSS ××=S the number of indirection grids stored in the indirection pool and

wvu SNSNSR ⋅×⋅×⋅= N the resolution in cells of the indirection pool.

Both data values and indices of children are stored as RGB-triples. The alpha channel is used
as a flag to determine the cell content (alpha = 1 indicates data – alpha = 0.5 indicates index –
alpha = 0 indicates empty cell). The root of the tree is always stored at (0,0,0) within the
indirection pool.

Accessing the structure: tree lookup

Once the tree is stored in texture memory we need to access it from a fragment program. As
with standard 3D textures the tree defines a texture within the unit cube. We want to retrieve

the value stored in the tree at a point []31,0∈M . The tree lookup starts from the root and

successively visits the nodes containing the pointM until a leaf is reached.

Let DI be the index of the indirection grid of the node visited at depth D. The tree lookup is

initialized with)0,0,0(0 =I which corresponds to the tree root. When we are at depth D we

know the index DI of the current node’s indirection grid. We will now explain how we

retrieve 1+DI from DI .

The lookup pointM is inside the node visited at depth D. To decide what to do next we need

to read from the indirection grid DI the value stored at the location corresponding toM . To

do so, we need to compute the coordinates of M within the node.

At depth D a complete tree produces a regular grid of resolution
DDD N NN ×× within the

unit cube. We call this grid the depth D grid. Each node of the tree at depth D corresponds to

a cell of this grid. In particular M is within the cell corresponding to the node visited at

depth D. The coordinates of M within this cell are given by)(DNMfrac ⋅ . We use these

coordinates to read the value from the indirection grid DI . The lookup coordinates within the

indirection pool are thus computed as:

N = 2

S = 4 x 1

R = 8 x 2

A

B

C

D

A quadtree

D (3,0) A (0,0) C (2,0)

(1,0)

(3,0)

B (1,0)

(2,0)

Figure 4: Storage in texture memory (2D case). The indirection pool
encodes the tree. Indirection grids are drawn with different colors. The
grey cells contain data.

2 . Su

2 . Sv

Corresponding indirection pool

S

NMfracI
P

D

D)(⋅+
=

We then retrieve the RGBA value stored at P in the indirection pool. Depending on the
alpha value, we will either return the RGB color if the child is a leaf, or we will interpret the

RGB values as the index of the child’s indirection grid (1+DI) and continue to the next tree

depth. Figure 5 summarizes this entire process for the 2D case (quadtree).

The lookup ends when a leaf is reached. In practice our fragment program also stops after a
fixed number of texture lookups: On most hardware it is only possible to implement loop
statements with a fixed number of iterations (however, early exit is possible on latest
hardware). The application is in charge of limiting the tree depth with respect to the
maximum number of texture lookups done within the fragment program. The complete tree
lookup code is given below in section Tree lookup Cg code.

Figure 5: Example of tree lookup. At each step the value stored within the current
node’s indirection grid is retrieved. If this value encodes an index, the
lookup continues to the next depth. Otherwise, the value is returned.

M

M

M

I0 = (0,0) - node A (tree root)

I1 = (1,0) - node B

I2 = (2,0) - node C

Depth 0

Depth 1

Depth 2

S

MfracI
P

)2.(0

0 +
=

A (0,0)

S

MfracI
P

)2.(1

1 +
=

S

MfracI
P

)2.(2

2 +
=

D (3,0) A (0,0) C (2,0) B (1,0)

P

The indirection pool

N = 2

S = 4x1

R = 8x2 The quadtree

lookup point M

Alpha=0.5, continue to next depth

Alpha=0.5, continue to next depth

Lookup at point M :

A

B

C

D

D (3,0) A (0,0) C (2,0)

(1,0)

(3,0)

B (1,0)

(2,0)

(1,0)

(3,0)
(2,0)

D (3,0) C (2,0)

(1,0)

B (1,0)

(2,0)

P

(3,0)

D (3,0) A (0,0) C (2,0) B (1,0)

P

Alpha = 1, RGB color is returned

(1,0)

(3,0) (2,0)

Further optimizations

The computation of P requires a frac instruction. It is actually possible to avoid computing
the frac by relying on the cyclic behaviour of the texture units (repeat mode). We leave the
detailed explanations as an appendix, located on the CDROM.

We computeP as
S

NM
P D

D
∆+⋅

= where D∆ is an integer within the range[[S,0 .

We store D∆ instead of directly storing the DI values. Please refer to the appendix on the

CDROM for the code to compute D∆ .

Encoding indices

The indirection pool is an 8-bit 3D RGBA texture. This means that we can only encode 256
different values per channel. This gives us an addressing space of 24 bits (3 indices of 8 bits).
It makes possible to encode octrees large enough for most applications. Moreover, the
resolution of 3D textures is limited to 2563 on current GPUs.

Within a fragment program a texture lookup into an 8-bit texture returns a value mapped
between [0,1]. However, we need to encode integers. Using a floating point texture to do so
would require more memory and would reduce performance. Instead, we map values
between [0,1] with a fixed precision of 1/255, and simply multiply the floating point value by
255 to obtain an integer. Note that on hardware without fixed precision registers, we need to
compute floor(0.5+255 * v) to avoid rounding errors.

Tree lookup Cg code

float4 tree_lookup(uniform sampler3D IndirPool, // Indirection Pool
 uniform float3 invS, // 1 / S
 uniform float N,
 float3 M) // Lookup coordinates
{

 float4 I = float4(0.0,0.0,0.0,0.0);
 float3 MND = M;

 for (float i=0;i<HRDWTREE_MAX_DEPTH;i++) { // fixed # of iterations
 float3 P;
 // compute lookup coords. within current node
 P = (MND + floor(0.5+ I.xyz*255.0)) * invS;
 // access indirection pool
 if (I.w < 0.9) // already in a leaf ?
 I =(float4)tex3D(IndirPool,P); // no, continue to next depth

#ifdef DYN_BRANCHING // early exit if hardware supports dynamic branching
 if (I.w > 0.9) // a leaf has been reached
 break;
#endif

 if (I.w < 0.1) // empty cell
 discard;
 // compute pos within next depth grid
 MND = MND * N;

 }

 return (I);
}

1.3 Application 1: painting on meshes

In this section we use the GPU accelerated octree structure presented in the previous section
to create a surface painting application. Thanks to the octree, the mesh does not need to be
parameterized. This is especially useful with complex meshes like trees, hairy monsters or
characters.

The user will be able to paint on the mesh through a 3D brush, similar to the brush used in
2D painting applications. In this example, the painting resolution is homogeneous along the
surface though multiresolution painting would be an easy extension if desired.

1.3.1 Creating the octree
We start by computing the bounding box of the object to be painted. The object is then
rescaled such as its largest dimension is mapped between [0,1[. The same scaling is applied to
the three dimensions since we want the painting resolution to be the same in every
dimension. After this process, the mesh entirely fits within the unit box.

The user specifies the desired resolution of the painting. This determines at which depth the
leaves of the octree containing colors are. For instance, if the user selects a resolution of 5123
the leaves containing colors will be at depth 9.

The tree is created by subdividing the nodes intersecting the surface until all the leaves are
either empty or are at the selected depth (color leaves). To check whether a tree node
intersects the geometry, we rely on the box defining the boundary of the node. This process
is depicted in Figure 6.

The following algorithm is used:

void createNode(depth, polygons, box)
 for all children (i,j,k) within (N,N,N)
 if (depth+1 == painting depth) // painting depth reached ?
 setChildColor(i,j,k,white) // child is at depth+1
 else
 childbox = computeSubBox(i,j,k,box)

 if (childbox intersect polygons)
 child=createChild(i,j,k)

 // recurse
 child->createNode(depth+1,polygons,childbox)

 else
 setChildAsEmpty(i,j,k)

This algorithm makes use of our GPU octree texture API. The links between nodes (indices
in the indirection grids) are set up by the createChild call. The values stored in tree leaves are
set up by calling setChildAsEmpty and setChildColor which also set the correct alpha value.

Figure 6: Building an octree around the mesh surface.

Input mesh Unit box Final octree

1.3.2 Painting
In our application the painting tool is drawn as a small sphere moving along the surface of
the mesh. This sphere is defined by a painting center Pcenter and a painting radius Pradius. The
behaviour of the brush is similar to that of brushes in 2D painting tools.

When the user paints, the leaf nodes intersecting the painting tool are updated. The new color
is computed as a weighted sum of the previous color and the painting color. The weight is
such that the painting opacity decreases as the distance from Pcenter increases.

To minimize the amount of data to be sent to the GPU as painting occurs, only the modified
leaves are updated in texture memory. This corresponds to a partial update of the indirection
pool texture (under OpenGL we use glTexSubImage3D). The modifications are tracked on a
copy of the tree stored in CPU memory.

1.3.3 Rendering
To render the textured mesh, we need to access the octree from the fragment program, using
the tree lookup defined in section 1.2.2.

The untransformed coordinates of the vertices are stored as 3D texture coordinates. These
3D texture coordinates will be interpolated during the rasterization of the triangles.
Therefore, within the fragment program we know the 3D point of the mesh surface being
projected in the fragment. By using these coordinates as texture coordinates for the tree
lookup, we retrieve the color stored in the octree texture.

However, this produces the equivalent of a standard texture lookup in ‘nearest’ mode. Linear
interpolation and MIP-mapping are often mandatory for high quality results. We discuss in
the following how to implement these techniques for octree textures.

 Linear interpolation

Linear interpolation of the texture can be obtained by extending the
standard 2D linear interpolation. Since the octree texture is a volume
texture, 8 samples are required for linear interpolation.

However, we store information only where the surface intersects the
volume. Some of the samples involved in the 3D linear interpolation
are not on the surface and have no associated color information.
Consider a sample at coordinates (i,j,k) within the maximum depth grid (recall that the depth
D grid is the regular grid produced by a complete octree at depth D). The seven other
samples involved in the 3D linear interpolation are at coordinates (i+1,j,k) (i,j+1,k) (i,j,k+1)
(i,j+1,k+1) (i+1,j,k+1) (i+1,j+1,k) and (i+1,j+1,k+1). However, some of these samples may
not be included in the tree because they are too far from the surface. This leads to rendering
artifacts as shown Figure 7.

Figure 7: Artifacts introduced by straightforward linear interpolation (left).
Corrected linear interpolation (right).

We remove these artifacts by modifying the tree creation process. We make sure that all of
the samples involved in the tri-linear interpolation are included in the tree. This can be easily
done by enlarging the box used to check whether a tree node intersects the geometry. The
box is built in such a way that it goes through the surrounding samples. Indeed, the sample at
(i,j,k) will be used by tri-linear interpolation if the surface is present between the sample and
its direct neighbours (e.g. the ones at (i+/-1,j+/-1,k+/-1)). This is illustrated Figure 8.

Figure 8: Modifying the tree creation to remove linear interpolation artifacts

In our demo, we use the same depth for all color leaves. Of course, the octree structure
makes it possible to store color information at different depths. However, doing so
complicates linear interpolation. For more details please refer to [Benson and Davis 2002].

 MIP-mapping

When a textured mesh becomes small on the screen multiple samples of the texture fall into
the same pixel. Without a proper filtering algorithm this leads to aliasing. Most GPUs
implement the MIP-mapping algorithm on standard 2D textures. We extend this algorithm to
our GPU octree textures.

We define the MIP-mapping levels as follows. The finest level (level 0) corresponds to the
leaves of the initial octree. A coarser level is built from the previous by merging the leaves in
their parent node. The node color is set to the average color of its leaves, and the leaves are
suppressed (see Figure 9). The octree depth is therefore reduced by one at each MIP-

The enlarged box shown for the middle
sample (red) now intersects with the surface.
The sample will be included in the octree.

All the samples required for
correct linear interpolation are
now stored in the octree.

Orange samples are not
stored in the tree. This leads
to false interpolation.

mapping level. The coarsest level has only one root node containing the average color of all
the leaves of the initial tree.

Storing one tree per MIP-mapping level would be expensive. Instead, we create a second 3D
texture, called the LOD pool. The LOD pool has one cell per indirection grid of the

indirection pool (see Figure 9, bottom row). Its resolution is thus wvu SSS ×× (see section

1.2.2, Storage). Each node of the initial tree becomes a leaf at a given MIP-mapping level.
The LOD pool stores the color taken by the nodes when they are used as a leaf in a MIP-
mapping level.

Figure 9: Example of tree with MIP-mapping

To texture the mesh at a specific MIP mapping level, we stop the tree lookup at the
corresponding depth and lookup the node’s average color in the LOD pool. The required
MIP-mapping level can be computed within the fragment program using partial derivative
instructions.

1.3.4 Converting the octree texture to a standard 2D texture
Our ultimate goal is to use octree textures as a replacement for 2D textures, thus completely
removing the need for a 2D parameterization. However, the octree texture requires explicit
programming of the texture filtering. This leads to long fragment programs. On recent
GPUs, performance is still high enough for texture authoring applications, where a single
object is displayed. But for applications displaying complex scenes, like games or simulators,
rendering performance may be too low. Moreover, GPUs are extremely efficient at displaying
filtered standard 2D texture maps.

Being able to convert an octree texture into a standard 2D texture is therefore important. We
would like to perform this conversion dynamically: This makes possible to select the best
representation at run-time. For an example, an object near the viewpoint would use the
linearly interpolated octree texture and switch to the corresponding filtered standard 2D
texture when it goes farther. The advantage is that filtering of the 2D texture is natively
handled by the GPU. Thus, the extra cost of the octree texture only applies when details are
visible.

In the following we assume that the mesh is already parameterized. We describe how we
create a 2D texture map from an octree texture.

To produce the 2D texture map, we render the triangles using their 2D (u,v) coordinates
instead of their 3D (x,y,z) coordinates. The triangles are textured with the octree texture,

Initial tree, level 0

A

B

C

D

D (3,0) A (0,0) C (2,0)

�B

�D

B (1,0)

�C

Indirection pool

A

D

B

A A

B

D

D (3,0) A (0,0) C (2,0) B (1,0)

LOD pool

level 1 level 2 level 3

using the 3D coordinates of the mesh vertices as texture coordinates for the tree lookup. The
result is shown Figure 10.

Figure 10: Converting the octree into a standard 2D texture

However, this approach produces artifacts. When the 2D texture is applied to the mesh with
filtering, the background color bleeds inside the texture. This is due to the fact that samples
outside of the 2D triangles are used by the linear interpolation for texture filtering. It is not
sufficient to add only a few border pixels: more and more pixels outside of the triangles are
used by coarser MIP-mapping levels. These artifacts are shown Figure 11.

Figure 11: Artifacts resulting from straightforward conversion

In order to suppress these artifacts, we compute a new texture where the colors are
extrapolated outside of the 2D triangles. To do so we use a simplified GPU variant of the
extrapolation method known as push-pull. This method has been used for the same purpose
in [Sander et al 2001].

We first render the 2D texture map as described above. The background is set with a 0 alpha
value. The triangles are rendered using an alpha value of 1. We then ask the GPU to
automatically generate the MIP-mapping levels of the texture. Then, we collapse all the MIP-
mapping levels into one texture interpreting the alpha value as a transparency coefficient.
This is done with the following Cg code:

Painted mesh Rendered texture map

Finest level Coarser level

PixelOut main(V2FI IN,

 uniform sampler2D Tex) // texture with MIP-mapping levels
{

 PixelOut OUT;

 float4 res = float4(0.0,0.0,0.0,0.0);
 float alpha = 0.0;
 // start with coarsest level
 float sz = TEX_SIZE;
 // for all MIP-mapping levels
 for (float i=0.0;i<=TEX_SIZE_LOG2;i+=1.0)
 {

 // texture lookup at this level
 float2 MIP=float2(sz/TEX_SIZE,0.0);
 float4 c=(float4)tex2D(Tex,IN.TCoord0,MIP.xy,MIP.yx);
 // blend with previous
 res=c + res*(1.0-c.w);

 // go to finer level
 sz /= 2.0;

 }

 // done – return normalized color (alpha == 1)
 OUT.COL=float4(res.xyz/res.w,1);
 return OUT;
}

Finally, new MIP-mapping levels are generated by the GPU from this new texture. Figure 12
and Figure 13 show the result of this process.

Figure 12: Color extrapolation

Figure 13: Artifacts are removed thanks to the color extrapolation.

Finest level Coarser level

1.4 Application 2: Surface Simulation

We have seen with the previous application that octree structures are useful for storing color
information along a mesh surface. But octree structures on GPU are also useful for
simulation purposes. In this section we present how we use an octree structure to simulate on
the GPU liquid flowing along a mesh.

Figure 14: Liquid flowing along a mesh surface

We will not go through the details of the simulation itself since this is beyond the scope of
this chapter. We concentrate instead on how we use the octree to make available all the
information required by the simulation.

The simulation is done by a cellular automaton residing on the surface of the object. To
perform the simulation we need to attach a 2D density map to the mesh surface. The next
simulation step is computed by updating the value of each pixel with respect to the density of
its neighbours. This is done by rendering into the next density map using the previous density
map and neighbouring information as input.

Because physical simulation is very sensitive to distortions, using a standard 2D
parameterization to associate the mesh surface to the density map would not produce good
results in general. Moreover computation power could be wasted if some parts of the 2D
density map are not used. Therefore, we use an octree to avoid the parameterization.

The first step is to create an octree around the mesh surface (see section 1.3.1). We do not
directly store density within the octree: the density needs to be updated using a “render to
texture” operation during the simulation and should therefore be stored in a 2D texture map.
Instead of density, each leaf of the octree contains the index of a pixel within the 2D density
map. Recall that the leaves of the octree store three 8 bits values (in RGB channels). To be

able to use a density map larger than 256256× , the values of the blue and green channels
are combined to form a 16 bits index.

During simulation we also need to access the density of the neighbours. A set of 2D RGB
textures, called neighbour textures, are used to encode neighbouring information. Let I be an
index stored within a leaf L of the octree. Let Dmap be the density map and N a neighbour
texture. The Cg call tex2D(Dmap,I) returns the density associated with leaf L. The call
tex2D(N,I) gives the index within the density map corresponding to a neighbour (in 3D
space) of the leaf L. Therefore, tex2D(Dmap,tex2D(N,I)) gives us the density of the
neighbour of L.

To encode the full 3D neighbourhood information, 26 textures would be required (a leaf of
the tree can have up to 26 neighbours in 3D). However, fewer neighbours are required in
practice. Since the octree is built around a 2D surface, the average number of neighbours is
likely to be closer to 9.

Once these textures have been created, the simulation can run on the density map. Rendering
is done by texturing the mesh with the density map. The octree is used to retrieve the density
stored in a given location of the mesh surface. Results of the simulation are shown Figure 14.
The user can interactively add liquid on the surface. Videos are available on the CD-ROM.

1.5 What is on the CD ?

You will find on the accompanying CD-ROM the complete source code of the N3 tree library
together with the complete source code of the painting and simulation applications. We also
provide compiled executable and videos of these applications. Please visit
www.aracknea.net/octreetextures for updates.

1.6 Conclusion

We have presented a complete GPU implementation of octree textures. These structures
offer an efficient and convenient way of storing undistorted data along a mesh surface. This
can be color data as in the mesh painting application, or data for dynamic textures simulation
as in the flowing liquid simulation. Rendering can be done efficiently on modern hardware
and we have provided solutions for filtering to avoid texture aliasing. Nevertheless, since 2D
texture maps are preferable in some situations we have shown how an octree texture can be
dynamically converted into a 2D texture without artifacts.

Octrees are very generic data structures, widely used in computer science. They are a
convenient way of storing information on un-parameterized meshes, and more generally in
space. Many other applications, like volume rendering, can benefit from their hardware
implementation.

We hope that you will discover many further uses for and improvements to the techniques
presented in this chapter!

1.7 References

[Benson and Davis 2002] Benson D., Davis J. Octree Textures, SIGGRAPH 2002
Conference Proceedings pp 785-790

[Debry et al 2002] Debry D., Gibbs J., Petty D., Robins N. Painting and
rendering textures on unaprameterized models. SIGGRAPH 2002,
Conference Proceedings pp 763-768

[Sander et al 2001] Sander P., Snyder J., Gortler S., and Hoppe H., Texture
mapping progressive meshes, SIGGRAPH 2001

1.8 Acknowledgments

Thanks to Philippe Chaubaroux for creating the 3D model used in Figure 10. The 3D model
used in Figure 1 was kindly provided by Mr. CAD (www.mr-cad.com).

